
Try out the interactive SQL Basics course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL Basics Cheat Sheet

SQL, or Structured Query Language, is a language to talk to
databases. It allows you to select specific data and to build
complex reports. Today, SQL is a universal language of data. It is
used in practically all technologies that process data.

SQL

SAMPLE DATA

CITY
id name country_id population rating
1 Paris 1 2243000 5
2 Berlin 2 3460000 3
...

COUNTRY
id name population area
1 France 66600000 640680
2 Germany 80700000 357000
...

ALIASES
COLUMNS
SELECT name AS city_name
FROM city;

TABLES
SELECT co.name, ci.name
FROM city AS ci
JOIN country AS co
 ON ci.country_id = co.id;

QUERYING MULTIPLE TABLES
INNER JOIN

SELECT city.name, country.name
FROM city
[INNER] JOIN country
 ON city.country_id = country.id;

CITY
id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

COUNTRY
id name
1 France
2 Germany
3 Iceland

JOIN (or explicitly INNER JOIN) returns rows that have
matching values in both tables.

LEFT JOIN

SELECT city.name, country.name
FROM city
LEFT JOIN country
 ON city.country_id = country.id;
CITY

id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

COUNTRY
id name
1 France
2 Germany

NULL NULL

LEFT JOIN returns all rows from the left table with
corresponding rows from the right table. If there's no
matching row, NULLs are returned as values from the second
table.

RIGHT JOIN

SELECT city.name, country.name
FROM city
RIGHT JOIN country
 ON city.country_id = country.id;

CITY
id name country_id
1 Paris 1
2 Berlin 2

NULL NULL NULL

COUNTRY
id name
1 France
2 Germany
3 Iceland

RIGHT JOIN returns all rows from the right table with
corresponding rows from the left table. If there's no
matching row, NULLs are returned as values from the left
table.

FULL JOIN

SELECT city.name, country.name
FROM city
FULL [OUTER] JOIN country
 ON city.country_id = country.id;
CITY

id name country_id
1 Paris 1
2 Berlin 2
3 Warsaw 4

NULL NULL NULL

COUNTRY
id name
1 France
2 Germany

NULL NULL
3 Iceland

FULL JOIN (or explicitly FULL OUTER JOIN) returns all rows
from both tables – if there's no matching row in the second
table, NULLs are returned.

CITY
country_id id name

6 6 San Marino
7 7 Vatican City
5 9 Greece
10 11 Monaco

COUNTRY
name id

San Marino 6
Vatican City 7

Greece 9
Monaco 10

NATURAL JOIN

SELECT city.name, country.name
FROM city
NATURAL JOIN country;

NATURAL JOIN will join tables by all columns with the same
name.

NATURAL JOIN used these columns to match rows:
city.id, city.name, country.id, country.name
NATURAL JOIN is very rarely used in practice.

CROSS JOIN

SELECT city.name, country.name
FROM city
CROSS JOIN country;

SELECT city.name, country.name
FROM city, country;

CROSS JOIN returns all possible combinations of rows from
both tables. There are two syntaxes available.

CITY
id name country_id
1 Paris 1
1 Paris 1
2 Berlin 2
2 Berlin 2

COUNTRY
id name
1 France
2 Germany
1 France
2 Germany

QUERYING SINGLE TABLE
Fetch all columns from the country table:

SELECT *
FROM country;

Fetch id and name columns from the city table:

SELECT id, name
FROM city;

SELECT name
FROM city
ORDER BY rating DESC;

Fetch city names sorted by the rating column
in the DESCending order:

SELECT name
FROM city
ORDER BY rating [ASC];

Fetch city names sorted by the rating column
in the default ASCending order:

SELECT name
FROM city
WHERE name LIKE '_ublin';

Fetch names of cities that start with any letter followed by
'ublin' (like Dublin in Ireland or Lublin in Poland):

SELECT name
FROM city
WHERE name != 'Berlin'
 AND name != 'Madrid';

Fetch names of cities that are neither Berlin nor Madrid:

SELECT name
FROM city
WHERE rating IS NOT NULL;

Fetch names of cities that don't miss a rating value:

SELECT name
FROM city
WHERE country_id IN (1, 4, 7, 8);

Fetch names of cities that are in countries with IDs 1, 4, 7, or 8:

FILTERING THE OUTPUT

SELECT name
FROM city
WHERE rating > 3;

Fetch names of cities that have a rating above 3:

COMPARISON OPERATORS

SELECT name
FROM city
WHERE name LIKE 'P%'
 OR name LIKE '%s';

Fetch names of cities that start with a 'P' or end with an 's':

TEXT OPERATORS

SELECT name
FROM city
WHERE population BETWEEN 500000 AND 5000000;

Fetch names of cities that have a population between
500K and 5M:

OTHER OPERATORS

Try out the interactive SQL Basics course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL Basics Cheat Sheet

•  �avg(expr) − average value for rows within the group

•  �count(expr) − count of values for rows within the group

•  ��max(expr) − maximum value within the group

•  �min(expr) − minimum value within the group

•  �sum(expr) − sum of values within the group

AGGREGATE FUNCTIONS

CYCLING
id name country
1 YK DE
2 ZG DE
3 WT PL
...

SKATING
id name country
1 YK DE
2 DF DE
3 AK PL
...

AGGREGATION AND GROUPING
GROUP BY groups together rows that have the same values in specified columns.
It computes summaries (aggregates) for each unique combination of values.

SUBQUERIES
A subquery is a query that is nested inside another query, or inside another subquery.
There are different types of subqueries.

SET OPERATIONS
Set operations are used to combine the results of two or more queries into a
single result. The combined queries must return the same number of columns and
compatible data types. The names of the corresponding columns can be different.

CITY
country_id count

1 3
2 3
4 2

CITY
id name country_id
1 Paris 1
101 Marseille 1
102 Lyon 1
2 Berlin 2
103 Hamburg 2
104 Munich 2
3 Warsaw 4
105 Cracow 4

EXAMPLE QUERIES

SELECT COUNT(*)
FROM city;

Find out the number of cities:

SELECT COUNT(rating)
FROM city;

Find out the number of cities with non-null ratings:

SELECT COUNT(DISTINCT country_id)
FROM city;

Find out the number of distinctive country values:

SELECT MIN(population), MAX(population)
FROM country;

Find out the smallest and the greatest country populations:

SELECT country_id, SUM(population)
FROM city
GROUP BY country_id;

Find out the total population of cities in respective countries:

SELECT country_id, AVG(rating)
FROM city
GROUP BY country_id
HAVING AVG(rating) > 3.0;

Find out the average rating for cities in respective countries if the average is above 3.0:

UNION

SELECT name
FROM cycling
WHERE country = 'DE'
UNION / UNION ALL
SELECT name
FROM skating
WHERE country = 'DE';

UNION combines the results of two result sets and removes duplicates.
UNION ALL doesn't remove duplicate rows.

This query displays German cyclists together with German skaters:

INTERSECT

SELECT name
FROM cycling
WHERE country = 'DE'
INTERSECT
SELECT name
FROM skating
WHERE country = 'DE';

INTERSECT returns only rows that appear in both result sets.

This query displays German cyclists who are also German skaters at the same time:

EXCEPT

SELECT name
FROM cycling
WHERE country = 'DE'
EXCEPT / MINUS
SELECT name
FROM skating
WHERE country = 'DE';

EXCEPT returns only the rows that appear in the first result set but do not appear
in the second result set.

This query displays German cyclists unless they are also German skaters at the
same time:

SINGLE VALUE

SELECT name FROM city
WHERE rating = (
 SELECT rating
 FROM city
 WHERE name = 'Paris'
);

The simplest subquery returns exactly one column and exactly one row. It can be
used with comparison operators =, <, <=, >, or >=.

This query finds cities with the same rating as Paris:

MULTIPLE VALUES

SELECT name
FROM city
WHERE country_id IN (
 SELECT country_id
 FROM country
 WHERE population > 20000000
);

A subquery can also return multiple columns or multiple rows. Such subqueries can be
used with operators IN, EXISTS, ALL, or ANY.

This query finds cities in countries that have a population above 20M:

CORRELATED

SELECT *
FROM city main_city
WHERE population > (
 SELECT AVG(population)
 FROM city average_city
 WHERE average_city.country_id = main_city.country_id
);

This query finds countries that have at least one city:
SELECT name
FROM country
WHERE EXISTS (
 SELECT *
 FROM city
 WHERE country_id = country.id
);

A correlated subquery refers to the tables introduced in the outer query. A correlated
subquery depends on the outer query. It cannot be run independently from the outer
query.

This query finds cities with a population greater than the average population in the
country:

month city sold
1 Rome 200
2 Paris 500
1 London 100
1 Paris 300
2 Rome 300
2 London 400
3 Rome 400

Abbreviation Meaning
UNBOUNDED PRECEDING BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

n PRECEDING BETWEEN n PRECEDING AND CURRENT ROW
CURRENT ROW BETWEEN CURRENT ROW AND CURRENT ROW
n FOLLOWING BETWEEN AND CURRENT ROW AND n FOLLOWING

UNBOUNDED FOLLOWING BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

sold city month
200 Rome 1
500 Paris 2
100 London 1
300 Paris 1
300 Rome 2
400 London 2
400 Rome 3

sold city month
300 Paris 1
500 Paris 2
200 Rome 1
300 Rome 2
400 Rome 3
100 London 1
400 London 2

WINDOW FUNCTIONS
compute their result based on a sliding window
frame, a set of rows that are somehow related to
the current row.

PARTITION BY
divides rows into multiple groups, called partitions, to
which the window function is applied.

WINDOW FRAME
is a set of rows that are somehow related to the current row. The window frame is evaluated separately within each partition.

ABBREVIATIONS DEFAULT WINDOW FRAME

ROWS | RANGE | GROUPS BETWEEN lower_bound AND upper_bound

ORDER BY
specifies the order of rows in each partition to which the
window function is applied.

LOGICAL ORDER OF OPERATIONS IN SQL

SYNTAX

Named Window Definition

AGGREGATE FUNCTIONS VS. WINDOW FUNCTIONS
unlike aggregate functions, window functions do not collapse rows.

PARTITION BY, ORDER BY, and window frame definition are all optional.

Default Partition: with no PARTITION BY clause, the entire
result set is the partition.

As of 2020, GROUPS is only supported in PostgreSQL 11 and up.

PARTITION BY city PARTITION BY city ORDER BY month

Default ORDER BY: with no ORDER BY clause, the order of
rows within each partition is arbitrary.

If ORDER BY is specified, then the frame is
RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW.

Without ORDER BY, the frame specification is
ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

You can use window functions in SELECT and ORDER BY. However, you can’t put window functions anywhere in the FROM,
WHERE, GROUP BY, or HAVING clauses.

SELECT city, month,
 sum(sold) OVER (
 PARTITION BY city
 ORDER BY month
 RANGE UNBOUNDED PRECEDING) total
FROM sales;

SELECT country, city,
 rank() OVER country_sold_avg
FROM sales
WHERE month BETWEEN 1 AND 6
GROUP BY country, city
HAVING sum(sold) > 10000
WINDOW country_sold_avg AS (
 PARTITION BY country
 ORDER BY avg(sold) DESC)
ORDER BY country, city;

1. FROM, JOIN
2. WHERE
3. GROUP BY
4. aggregate functions
5. HAVING
6. window functions

7. SELECT
8. DISTINCT
9. UNION/INTERSECT/EXCEPT
10. ORDER BY
11. OFFSET
12. LIMIT/FETCH/TOP

SELECT <column_1>, <column_2>,
 <window_function>() OVER (
 PARTITION BY <...>
 ORDER BY <...>
 <window_frame>) <window_column_alias>
FROM <table_name>;

SELECT <column_1>, <column_2>,
 <window_function>() OVER <window_name>
FROM <table_name>
WHERE <...>
GROUP BY <...>
HAVING <...>
WINDOW <window_name> AS (
 PARTITION BY <...>
 ORDER BY <...>
 <window_frame>)
ORDER BY <...>;

current row
∑ ∑

∑

∑

Aggregate Functions Window Functions month city sold sum
1 Paris 300 800
2 Paris 500 800
1 Rome 200 900
2 Rome 300 900
3 Rome 400 900
1 London 100 500
2 London 400 500

city sold month
Paris 300 1
Rome 200 1
Paris 500 2
Rome 100 4
Paris 200 4
Paris 300 5
Rome 200 5

London 200 5
London 100 6

Rome 300 6

ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING

1 row before the current row and
1 row after the current row

city sold month
Paris 300 1
Rome 200 1
Paris 500 2
Rome 100 4
Paris 200 4
Paris 300 5
Rome 200 5

London 200 5
London 100 6

Rome 300 6

RANGE BETWEEN 1 PRECEDING
AND 1 FOLLOWING

values in the range between 3 and 5
ORDER BY must contain a single expression

city sold month
Paris 300 1
Rome 200 1
Paris 500 2
Rome 100 4
Paris 200 4
Paris 300 5
Rome 200 5

London 200 5
London 100 6

Rome 300 6

GROUPS BETWEEN 1 PRECEDING
AND 1 FOLLOWING

1 group before the current row and 1 group
after the current row regardless of the value

PARTITION UNBOUNDED
PRECEDING

UNBOUNDED
FOLLOWING

N PRECEDING

M FOLLOWING

N ROWS

M ROWS

The bounds can be any of the five options:

 ∙ �UNBOUNDED PRECEDING
 ∙ �n PRECEDING
 ∙ �CURRENT ROW
 ∙ �n FOLLOWING
 ∙ �UNBOUNDED FOLLOWING

The lower_bound must be BEFORE the upper_bound

current
row

current
row

current
row

CURRENT
ROW

SQL Window Functions Cheat Sheet

Try out the interactive Window Functions course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

city price
row_number rank dense_rank

over(order by price)
Paris 7 1 1 1
Rome 7 2 1 1

London 8.5 3 3 2
Berlin 8.5 4 3 2

Moscow 9 5 5 3
Madrid 10 6 6 4

Oslo 10 7 6 4

LIST OF WINDOW FUNCTIONS

AGGREGATE FUNCTIONS

RANKING FUNCTIONS
 ∙ �row_number() − unique number for each row within partition, with different numbers

for tied values
 ∙ �rank() − ranking within partition, with gaps and same ranking for tied values
 ∙ �dense_rank() − ranking within partition, with no gaps and same ranking for tied values

ANALYTIC FUNCTIONS
 ∙ �lead(expr, offset, default) − the value for the row offset rows after the current; offset and

default are optional; default values: offset = 1, default = NULL
 ∙ �lag(expr, offset, default) − the value for the row offset rows before the current; offset and

default are optional; default values: offset = 1, default = NULL

 ∙ �nth_value(expr, n) − the value for the n-th row within the window frame; n must be an integer ∙ ��ntile(n) − divide rows within a partition as equally as possible into n groups, and assign each
row its group number.

 ∙ �first_value(expr) − the value for the first row within the window frame
 ∙ �last_value(expr) − the value for the last row within the window frame

DISTRIBUTION FUNCTIONS
 ∙ �percent_rank() − the percentile ranking number of a row—a value in [0, 1] interval:

(rank - 1) / (total number of rows - 1)
 ∙ �cume_dist() − the cumulative distribution of a value within a group of values, i.e., the number of

rows with values less than or equal to the current row’s value divided by the total number of rows;
a value in (0, 1] interval

ORDER BY and Window Frame: rank() and dense_rank() require ORDER BY, but
row_number() does not require ORDER BY. Ranking functions do not accept window
frame definition (ROWS, RANGE, GROUPS).

ORDER BY and Window Frame: first_value(),
last_value(), and nth_value() do not
require an ORDER BY. They accept window frame
definition (ROWS, RANGE, GROUPS).

ORDER BY and Window Frame: ntile(),
lead(), and lag() require an ORDER BY.
They do not accept window frame definition
(ROWS, RANGE, GROUPS).

ORDER BY and Window Frame:
Aggregate functions do not require an
ORDER BY. They accept window frame
definition (ROWS, RANGE, GROUPS).

Note: You usually want to use RANGE BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING with last_value(). With the default
window frame for ORDER BY, RANGE UNBOUNDED
PRECEDING, last_value() returns the value for
the current row.

ORDER BY and Window Frame: Distribution functions require ORDER BY. They do not accept window frame
definition (ROWS, RANGE, GROUPS).

Aggregate Functions
 ∙ avg()
 ∙ count()
 ∙ max()
 ∙ �min()
 ∙ sum()

Ranking Functions
 ∙ row_number()
 ∙ rank()
 ∙ dense_rank()

Distribution Functions
 ∙ percent_rank()
 ∙ cume_dist()

Analytic Functions
 ∙ lead()
 ∙ lag()
 ∙ �ntile()
 ∙ first_value()
 ∙ last_value()
 ∙ nth_value()

 ∙ �avg(expr) − average value for
rows within the window frame

 ∙ �count(expr) − count of values
for rows within the window
frame

 ∙ ��max(expr) − maximum value
within the window frame

 ∙ �min(expr) − minimum value
within the window frame

 ∙ �sum(expr) − sum of values within
the window frame

month sold
1 500
2 300
3 400
4 100
5 500

NULL
500
300
400
100

lag(sold) OVER(ORDER BY month)

or
de

r b
y

m
on

th

city month sold
Paris 1 500
Paris 2 300
Paris 3 400
Rome 2 200
Rome 3 300
Rome 4 500

first_value
500
500
500
200
200
200

first_value(sold) OVER
(PARTITION BY city ORDER BY month)

city month sold
Paris 1 500
Paris 2 300
Paris 3 400
Rome 2 200
Rome 3 300
Rome 4 500

last_value
400
400
400
500
500
500

last_value(sold) OVER
(PARTITION BY city ORDER BY month
RANGE BETWEEN UNBOUNDED PRECEDING

AND UNBOUNDED FOLLOWING)

month sold
1 500
2 300
3 400
4 100
5 500

300
400
100
500

NULL

lead(sold) OVER(ORDER BY month)

or
de

r b
y

m
on

th

city sold cume_dist
Paris 100 0.2

Berlin 150 0.4
Rome 200 0.8

Moscow 200 0.8
London 300 1

80% of values are
less than or equal
to this one

cume_dist() OVER(ORDER BY sold)

city sold percent_rank
Paris 100 0

Berlin 150 0.25
Rome 200 0.5

Moscow 200 0.5
London 300 1

without this row 50% of
values are less than this
row’s value

percent_rank() OVER(ORDER BY sold)

SQL Window Functions Cheat Sheet

city month sold
Paris 1 500
Paris 2 300
Paris 3 400
Rome 2 200
Rome 3 300
Rome 4 500
Rome 5 300
London 1 100

nth_value
300
300
300
300
300
300
300

NULL

nth_value(sold, 2) OVER (PARTITION BY city
ORDER BY month RANGE BETWEEN UNBOUNDED

PRECEDING AND UNBOUNDED FOLLOWING)

month sold
1 500
2 300
3 400
4 100
5 500

0
0

500
300
400

lag(sold, 2, 0) OVER(ORDER BY month)

or
de

r b
y

m
on

th

off
se

t=
2month sold

1 500
2 300
3 400
4 100
5 500

400
100
500

0
0

lead(sold, 2, 0) OVER(ORDER BY month)

or
de

r b
y

m
on

th

off
se

t=
2

111

222

333

city sold
Rome 100
Paris 100
London 200
Moscow 200
Berlin 200
Madrid 300
Oslo 300
Dublin 300

1
1
1
2
2
2
3
3

ntile(3)

1

2

3

Try out the interactive Window Functions course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

Try out the interactive SQL JOINs course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL JOINs Cheat Sheet

NATURAL JOIN
If the tables have columns with the same name, you can use
NATURAL JOIN instead of JOIN.

The common column appears only once in the result table.
Note: NATURAL JOIN is rarely used in real life.

SELECT *
FROM toy
NATURAL JOIN cat;

cat_id toy_id toy_name cat_name
1 5 ball Kitty
1 3 mouse Kitty
3 1 ball Sam
4 4 mouse Misty

LEFT JOIN
LEFT JOIN returns all rows from the left table with matching rows from the right table. Rows without a match are filled
with NULLs. LEFT JOIN is also called LEFT OUTER JOIN.

SELECT *
FROM toy
LEFT JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty
1 ball 3 3 Sam
4 mouse 4 4 Misty
2 spring NULL NULL NULL

whole left table

RIGHT JOIN
RIGHT JOIN returns all rows from the right table with matching rows from the left table. Rows without a match are
filled with NULLs. RIGHT JOIN is also called RIGHT OUTER JOIN.

SELECT *
FROM toy
RIGHT JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty

NULL NULL NULL 2 Hugo
1 ball 3 3 Sam
4 mouse 4 4 Misty

whole right table

FULL JOIN
FULL JOIN returns all rows from the left table and all rows from the right table. It fills the non-matching rows with
NULLs. FULL JOIN is also called FULL OUTER JOIN.

SELECT *
FROM toy
FULL JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty

NULL NULL NULL 2 Hugo
1 ball 3 3 Sam
4 mouse 4 4 Misty
2 spring NULL NULL NULL

whole left table whole right table

CROSS JOIN
CROSS JOIN returns all possible combinations of rows from the left and right tables.

toy_id toy_name cat_id cat_id cat_name
1 ball 3 1 Kitty
2 spring NULL 1 Kitty
3 mouse 1 1 Kitty
4 mouse 4 1 Kitty
5 ball 1 1 Kitty
1 ball 3 2 Hugo
2 spring NULL 2 Hugo
3 mouse 1 2 Hugo
4 mouse 4 2 Hugo
5 ball 1 2 Hugo
1 ball 3 3 Sam

··· ··· ··· ··· ···

SELECT *
FROM toy
CROSS JOIN cat;

SELECT *
FROM toy, cat;

Other syntax:

JOIN
JOIN returns all rows that match the ON condition. JOIN is also called INNER JOIN.

SELECT *
FROM toy
JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty
1 ball 3 3 Sam
4 mouse 4 4 Misty

There is also another, older syntax, but it isn't recommended.
List joined tables in the FROM clause, and place the conditions in the WHERE clause.

SELECT *
FROM toy, cat
WHERE toy.cat_id = cat.cat_id;

JOIN combines data from two tables.

JOINING TABLES

JOIN typically combines rows with equal values for the specified columns. Usually, one table contains a primary key,
which is a column or columns that uniquely identify rows in the table (the cat_id column in the cat table).
The other table has a column or columns that refer to the primary key columns in the first table (the cat_id column in
the toy table). Such columns are foreign keys. The JOIN condition is the equality between the primary key columns in
one table and columns referring to them in the other table.

CAT
cat_id cat_name

1 Kitty
2 Hugo
3 Sam
4 Misty

TOY
toy_id toy_name cat_id

1 ball 3
2 spring NULL
3 mouse 1
4 mouse 4
5 ball 1

JOIN CONDITIONS
The JOIN condition doesn't have to be an equality – it can be any condition you want. JOIN doesn't interpret the JOIN
condition, it only checks if the rows satisfy the given condition.

To refer to a column in the JOIN query, you have to use the full column name: first the table name, then a dot (.) and the
column name:
 ON cat.cat_id = toy.cat_id
You can omit the table name and use just the column name if the name of the column is unique within all columns in the
joined tables.

Try out the interactive SQL JOINs course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL JOINs Cheat Sheet
COLUMN AND TABLE ALIASES
Aliases give a temporary name to a table or a column in a table.

A column alias renames a column in the result. A table alias renames a table within the query. If you define a table alias,
you must use it instead of the table name everywhere in the query. The AS keyword is optional in defining aliases.

OWNER AS o
id name
1 John Smith
2 Danielle Davis

CAT AS c
cat_id cat_name mom_id owner_id

1 Kitty 5 1
2 Hugo 1 2
3 Sam 2 2
4 Misty 1 NULL

SELECT
 o.name AS owner_name,
 c.cat_name
FROM cat AS c
JOIN owner AS o
 ON c.owner_id = o.id;

cat_name owner_name
Kitty John Smith
Sam Danielle Davis
Hugo Danielle Davis

SELF JOIN
You can join a table to itself, for example, to show a parent-child relationship.

CAT AS child
cat_id cat_name owner_id mom_id

1 Kitty 1 5
2 Hugo 2 1
3 Sam 2 2
4 Misty NULL 1

CAT AS mom
cat_id cat_name owner_id mom_id

1 Kitty 1 5
2 Hugo 2 1
3 Sam 2 2
4 Misty NULL 1

Each occurrence of the table must be given a different alias. Each column reference must be preceded with an
appropriate table alias.

SELECT
 child.cat_name AS child_name,
 mom.cat_name AS mom_name
FROM cat AS child
JOIN cat AS mom
 ON child.mom_id = mom.cat_id;

child_name mom_name
Hugo Kitty
Sam Hugo
Misty Kitty

NON-EQUI SELF JOIN
You can use a non-equality in the ON condition, for example, to show all different pairs of rows.

TOY AS a
toy_id toy_name cat_id

3 mouse 1
5 ball 1
1 ball 3
4 mouse 4
2 spring NULL

TOY AS b
cat_id toy_id toy_name

1 3 mouse
1 5 ball
3 1 ball
4 4 mouse

NULL 2 spring

SELECT
 a.toy_name AS toy_a,
 b.toy_name AS toy_b
FROM toy a
JOIN toy b
 ON a.cat_id < b.cat_id;

cat_a_id toy_a cat_b_id toy_b
1 mouse 3 ball
1 ball 3 ball
1 mouse 4 mouse
1 ball 4 mouse
3 ball 4 mouse

MULTIPLE JOINS
You can join more than two tables together. First, two tables are joined, then the third table is joined to the result of the
previous joining.

TOY AS t
toy_id toy_name cat_id

1 ball 3
2 spring NULL
3 mouse 1
4 mouse 4
5 ball 1

CAT AS c
cat_id cat_name mom_id owner_id

1 Kitty 5 1
2 Hugo 1 2
3 Sam 2 2
4 Misty 1 NULL

OWNER AS o
id name
1 John

Smith

2 Danielle
Davis

JOIN & JOIN LEFT JOIN & LEFT JOINJOIN & LEFT JOIN
SELECT
 t.toy_name,
 c.cat_name,
 o.name AS owner_name
FROM toy t
JOIN cat c
 ON t.cat_id = c.cat_id
JOIN owner o
 ON c.owner_id = o.id;

SELECT
 t.toy_name,
 c.cat_name,
 o.name AS owner_name
FROM toy t
JOIN cat c
 ON t.cat_id = c.cat_id
LEFT JOIN owner o
 ON c.owner_id = o.id;

SELECT
 t.toy_name,
 c.cat_name,
 o.name AS owner_name
FROM toy t
LEFT JOIN cat c
 ON t.cat_id = c.cat_id
LEFT JOIN owner o
 ON c.owner_id = o.id;

toy_name cat_name owner_name
ball Kitty John Smith
mouse Kitty John Smith
ball Sam Danielle Davis
mouse Misty NULL
spring NULL NULL

toy_name cat_name owner_name
ball Kitty John Smith
mouse Kitty John Smith
ball Sam Danielle Davis
mouse Misty NULL

toy_name cat_name owner_name
ball Kitty John Smith
mouse Kitty John Smith
ball Sam Danielle Davis

JOIN WITH MULTIPLE CONDITIONS
You can use multiple JOIN conditions using the ON keyword once and the AND keywords as many times as you need.

CAT AS c
cat_id cat_name mom_id owner_id age

1 Kitty 5 1 17
2 Hugo 1 2 10
3 Sam 2 2 5
4 Misty 1 NULL 11

OWNER AS o
id name age
1 John Smith 18
2 Danielle Davis 10

SELECT
 cat_name,
 o.name AS owner_name,
 c.age AS cat_age,
 o.age AS owner_age
FROM cat c
JOIN owner o
 ON c.owner_id = o.id
 AND c.age < o.age;

cat_name owner_name age age
Kitty John Smith 17 18
Sam Danielle Davis 5 10

Standard SQL Functions Cheat Sheet
TEXT FUNCTIONS
CONCATENATION
Use the || operator to concatenate two strings:
SELECT 'Hi ' || 'there!';
-- result: Hi there!
Remember that you can concatenate only character strings using
||. Use this trick for numbers:
SELECT '' || 4 || 2;
-- result: 42
Some databases implement non-standard solutions for
concatenating strings like CONCAT() or CONCAT_WS(). Check
the documentation for your specific database.

LIKE OPERATOR – PATTERN MATCHING
Use the _ character to replace any single character. Use the %
character to replace any number of characters (including 0
characters).

Fetch all names that start with any letter followed by
'atherine':
SELECT name
FROM names
WHERE name LIKE '_atherine';
Fetch all names that end with 'a':
SELECT name
FROM names
WHERE name LIKE '%a';

USEFUL FUNCTIONS
Get the count of characters in a string:
SELECT LENGTH('LearnSQL.com');
-- result: 12
Convert all letters to lowercase:
SELECT LOWER('LEARNSQL.COM');
-- result: learnsql.com
Convert all letters to uppercase:
SELECT UPPER('LearnSQL.com');
-- result: LEARNSQL.COM
Convert all letters to lowercase and all first letters to uppercase
(not implemented in MySQL and SQL Server):
SELECT INITCAP('edgar frank ted cODD');
-- result: Edgar Frank Ted Codd
Get just a part of a string:
SELECT SUBSTRING('LearnSQL.com', 9);
-- result: .com
SELECT SUBSTRING('LearnSQL.com', 0, 6);
-- result: Learn
Replace part of a string:
SELECT REPLACE('LearnSQL.com', 'SQL',
'Python');
-- result: LearnPython.com

NUMERIC FUNCTIONS
BASIC OPERATIONS
Use +, -, *, / to do some basic math. To get the number of
seconds in a week:
SELECT 60 * 60 * 24 * 7; -- result: 604800

CASTING
From time to time, you need to change the type of a number. The
CAST() function is there to help you out. It lets you change the
type of value to almost anything (integer, numeric, double
precision, varchar, and many more).
Get the number as an integer (without rounding):
SELECT CAST(1234.567 AS integer);
-- result: 1234
Change a column type to double precision
SELECT CAST(column AS double precision);

USEFUL FUNCTIONS
Get the remainder of a division:
SELECT MOD(13, 2);
-- result: 1

Round a number to its nearest integer:
SELECT ROUND(1234.56789);
-- result: 1235

Round a number to three decimal places:
SELECT ROUND(1234.56789, 3);
-- result: 1234.568
PostgreSQL requires the first argument to be of the type
numeric – cast the number when needed.

To round the number up:
SELECT CEIL(13.1); -- result: 14
SELECT CEIL(-13.9); -- result: -13
The CEIL(x) function returns the smallest integer not less than
x. In SQL Server, the function is called CEILING().

To round the number down:
SELECT FLOOR(13.8); -- result: 13
SELECT FLOOR(-13.2); -- result: -14
The FLOOR(x) function returns the greatest integer not greater
than x.

To round towards 0 irrespective of the sign of a number:
SELECT TRUNC(13.5); -- result: 13
SELECT TRUNC(-13.5); -- result: -13
TRUNC(x) works the same way as CAST(x AS integer). In
MySQL, the function is called TRUNCATE().

To get the absolute value of a number:
SELECT ABS(-12); -- result: 12

To get the square root of a number:
SELECT SQRT(9); -- result: 3

NULLs
To retrieve all rows with a missing value in the price column:
WHERE price IS NULL

To retrieve all rows with the weight column populated:
WHERE weight IS NOT NULL

Why shouldn't you use price = NULL or weight != NULL?
Because databases don't know if those expressions are true or
false – they are evaluated as NULLs.
Moreover, if you use a function or concatenation on a column that
is NULL in some rows, then it will get propagated. Take a look:

domain LENGTH(domain)

LearnSQL.com 12

LearnPython.com 15

NULL NULL

vertabelo.com 13

USEFUL FUNCTIONS
COALESCE(x, y, ...)
To replace NULL in a query with something meaningful:
SELECT
 domain,
COALESCE(domain, 'domain missing')

FROM contacts;

domain coalesce

LearnSQL.com LearnSQL.com

NULL domain missing

The COALESCE() function takes any number of arguments and
returns the value of the first argument that isn't NULL.

NULLIF(x, y)
To save yourself from division by 0 errors:
SELECT
 last_month,
 this_month,
 this_month * 100.0
 / NULLIF(last_month, 0)

AS better_by_percent
FROM video_views;

last_month this_month better_by_percent

723786 1085679 150.0

0 178123 NULL

The NULLIF(x, y) function will return NULL if x is the same as
y, else it will return the x value.

CASE WHEN
The basic version of CASE WHEN checks if the values are equal
(e.g., if fee is equal to 50, then 'normal' is returned). If there
isn't a matching value in the CASE WHEN, then the ELSE value
will be returned (e.g., if fee is equal to 49, then 'not
available' will show up.
SELECT

CASE fee
WHEN 50 THEN 'normal'
WHEN 10 THEN 'reduced'
WHEN 0 THEN 'free'
ELSE 'not available'

END AS tariff
FROM ticket_types;

The most popular type is the searched CASE WHEN – it lets you
pass conditions (as you'd write them in the WHERE clause),
evaluates them in order, then returns the value for the first
condition met.
SELECT

CASE
WHEN score >= 90 THEN 'A'
WHEN score > 60 THEN 'B'
ELSE 'F'

END AS grade
FROM test_results;
Here, all students who scored at least 90 will get an A, those with
the score above 60 (and below 90) will get a B, and the rest will
receive an F.

TROUBLESHOOTING
Integer division
When you don't see the decimal places you expect, it means that
you are dividing between two integers. Cast one to decimal:
CAST(123 AS decimal) / 2

Division by 0
To avoid this error, make sure that the denominator is not equal
to 0. You can use the NULLIF() function to replace 0 with a
NULL, which will result in a NULL for the whole expression:
count / NULLIF(count_all, 0)

Inexact calculations
If you do calculations using real (floating point) numbers, you'll
end up with some inaccuracies. This is because this type is meant
for scientific calculations such as calculating the velocity.
Whenever you need accuracy (such as dealing with monetary
values), use the decimal / numeric type (or money if
available).

Errors when rounding with a specified precision
Most databases won't complain, but do check the documentation
if they do. For example, if you want to specify the rounding
precision in PostgreSQL, the value must be of the numeric type.

Try out the interactive Standard SQL Functions course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

Standard SQL Functions Cheat Sheet
AGGREGATION AND GROUPING

COUNT(expr) − the count of values for the rows within the
group
SUM(expr) − the sum of values within the group
AVG(expr) − the average value for the rows within the group
MIN(expr) − the minimum value within the group
MAX(expr) − the maximum value within the group

To get the number of rows in the table:
SELECT COUNT(*)
FROM city;

To get the number of non-NULL values in a column:
SELECT COUNT(rating)
FROM city;

To get the count of unique values in a column:
SELECT COUNT(DISTINCT country_id)
FROM city;

GROUP BY
CITY

name country_id

Paris 1

Marseille 1

Lyon 1

Berlin 2

Hamburg 2

Munich 2

Warsaw 4

Cracow 4

CITY

country_id count

1 3

2 3

4 2

The example above – the count of cities in each country:
SELECT name, COUNT(country_id)
FROM city
GROUP BY name;

The average rating for the city:
SELECT city_id, AVG(rating)
FROM ratings
GROUP BY city_id;

Common mistake: COUNT(*) and LEFT JOIN
When you join the tables like this: client LEFT JOIN
project, and you want to get the number of projects for every
client you know, COUNT(*) will return 1 for each client even if
you've never worked for them. This is because, they're still
present in the list but with the NULL in the fields related to the
project after the JOIN. To get the correct count (0 for the clients
you've never worked for), count the values in a column of the
other table, e.g., COUNT(project_name). Check out this
exercise to see an example.

DATE AND TIME
There are 3 main time-related types: date, time, and
timestamp. Time is expressed using a 24-hour clock, and it can
be as vague as just hour and minutes (e.g., 15:30 – 3:30 p.m.) or
as precise as microseconds and time zone (as shown below):

2021-12-31 14:39:53.662522-05
date time

timestamp
YYYY-mm-dd HH:MM:SS.ssssss±TZ

14:39:53.662522-05 is almost 2:40 p.m. CDT (e.g., in
Chicago; in UTC it'd be 7:40 p.m.). The letters in the above
example represent:

In the date part:
YYYY – the 4-digit
year.
mm – the zero-padded
month (01—January
through 12—
December).
dd – the zero-padded
day.

In the time part:
HH – the zero-padded hour in a 24-
hour clock.
MM – the minutes.
SS – the seconds. Omissible.
ssssss – the smaller parts of a
second – they can be expressed
using 1 to 6 digits. Omissible.
±TZ – the timezone. It must start
with either + or -, and use two
digits relative to UTC. Omissible.

What time is it?
To answer that question in SQL, you can use:

CURRENT_TIME – to find what time it is.
CURRENT_DATE – to get today's date. (GETDATE() in SQL
Server.)
CURRENT_TIMESTAMP – to get the timestamp with the two
above.

Creating values
To create a date, time, or timestamp, simply write the value
as a string and cast it to the proper type.
SELECT CAST('2021-12-31' AS date);
SELECT CAST('15:31' AS time);
SELECT CAST('2021-12-31 23:59:29+02' AS
timestamp);
SELECT CAST('15:31.124769' AS time);
Be careful with the last example – it will be interpreted as 15
minutes 31 seconds and 124769 microseconds! It is always a good
idea to write 00 explicitly for hours: '00:15:31.124769'.

You might skip casting in simple conditions – the database will
know what you mean.
SELECT airline, flight_number, departure_time
FROM airport_schedule
WHERE departure_time < '12:00';

INTERVALs
Note: In SQL Server, intervals aren't implemented – use the
DATEADD() and DATEDIFF() functions.

To get the simplest interval, subtract one time value from
another:
SELECT CAST('2021-12-31 23:59:59' AS
timestamp) - CAST('2021-06-01 12:00:00' AS
timestamp);
-- result: 213 days 11:59:59

To define an interval: INTERVAL '1' DAY
This syntax consists of three elements: the INTERVAL keyword, a
quoted value, and a time part keyword (in singular form.) You can
use the following time parts: YEAR, MONTH, WEEK, DAY, HOUR,
MINUTE, and SECOND. In MySQL, omit the quotes. You can join
many different INTERVALs using the + or - operator:
INTERVAL '1' YEAR + INTERVAL '3' MONTH

In some databases, there's an easier way to get the above value.
And it accepts plural forms! INTERVAL '1 year 3
months'
There are two more syntaxes in the Standard SQL:

Syntax What it does

INTERVAL 'x-y' YEAR TO
MONTH

INTERVAL 'x year y
month'

INTERVAL 'x-y' DAY TO
SECOND

INTERVAL 'x day y
second'

In MySQL, write year_month instead of YEAR TO MONTH and
day_second instead of DAY TO SECOND.

To get the last day of a month, add one month and subtract one
day:
SELECT CAST('2021-02-01' AS date)
 + INTERVAL '1' MONTH
 - INTERVAL '1' DAY;

To get all events for next three months from today:
SELECT event_date, event_name
FROM calendar
WHERE event_date BETWEEN CURRENT_DATE AND
CURRENT_DATE + INTERVAL '3' MONTH;

To get part of the date:
SELECT EXTRACT(YEAR FROM birthday)
FROM artists;
One of possible returned values: 1946. In SQL Server, use the
DATEPART(part, date) function.

TIME ZONES
In the SQL Standard, the date type can't have an associated time
zone, but the time and timestamp types can. In the real world,
time zones have little meaning without the date, as the offset can
vary through the year because of daylight saving time. So, it's
best to work with the timestamp values.

When working with the type timestamp with time zone
(abbr. timestamptz), you can type in the value in your local
time zone, and it'll get converted to the UTC time zone as it is
inserted into the table. Later when you select from the table it
gets converted back to your local time zone. This is immune to
time zone changes.

AT TIME ZONE
To operate between different time zones, use the AT TIME
ZONE keyword.

If you use this format: {timestamp without time zone}
AT TIME ZONE {time zone}, then the database will read
the time stamp in the specified time zone and convert it to the
time zone local to the display. It returns the time in the format
timestamp with time zone.

If you use this format: {timestamp with time zone} AT
TIME ZONE {time zone}, then the database will convert the
time in one time zone to the target time zone specified by AT
TIME ZONE. It returns the time in the format timestamp
without time zone, in the target time zone.

You can define the time zone with popular shortcuts like UTC,
MST, or GMT, or by continent/city such as:
America/New_York, Europe/London, and Asia/Tokyo.

Examples
We set the local time zone to 'America/New_York'.

SELECT TIMESTAMP '2021-07-16 21:00:00' AT
TIME ZONE 'America/Los_Angeles';
-- result: 2021-07-17 00:00:00-04

Here, the database takes a timestamp without a time zone and it's
told it's in Los Angeles time, which is then converted to the local
time – New York for displaying. This answers the question "At
what time should I turn on the TV if the show starts at 9 PM in
Los Angeles?"

SELECT TIMESTAMP WITH TIME ZONE '2021-06-20
19:30:00' AT TIME ZONE 'Australia/Sydney';
-- result: 2021-06-21 09:30:00

Here, the database gets a timestamp specified in the local time
zone and converts it to the time in Sydney (note that it didn't
return a time zone.) This answers the question "What time is it in
Sydney if it's 7:30 PM here?"

Try out the interactive Standard SQL Functions course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

